THE COMPLETE ASSIGNMENT OF THE ¹H- AND ¹³C-NMR SPECTRA OF ISOCOCCULIDINE¹

OM PRAKASH,* RAJA ROY, SUDHA JAIN, and DEWAN S. BHAKUNI*

Central Drug Research Institute, Lucknow 226 001, India

Isococculidine [1], a representative of abnormal Erythrina alkaloids isolated from the leaves of Cocculus laurifolius DC. (Menispermaceae), exhibited marked neuromuscular blocking and hypotensive activities (1). The stereostructure of 1 has been established by physicochemical methods (2,3). However, no detailed ¹H- and ¹³C-nmr analysis of **1** and other abnormal Erythrina alkaloids has been previously made. It was thought desirable to complete its ¹H- and ¹³C-nmr assignments, which could be very useful in studies of the biosynthetic pathways to these alkaloids using ¹³C-labeled precursors. The effect of the N-methiodide group on the chemical shifts of the methine and methylene carbons was also studied, because pachygonine, the Nmethio salt of an abnormal Erythrina alkaloid, has been reported from Pachygone ovata (4).

RESULTS AND DISCUSSION

Preliminary assignments of the alicyclic protons of 1 (Table 1) were achieved from the homonuclear COSY spectrum. Inasmuch as the ¹H-nmr assignments of the aromatic, olefinic, and

¹CDRI Communication No. 4150.

H-3 protons of 1 have previously been established (2), they will not be discussed here. The starting point for ¹Hnmr analysis was the olefinic methine signal at δ 6.03 which showed a cross peak at δ 2.76 with H-6 in the alicyclic region. Moreover, the signal at δ 2.76 was correlated to the signals at δ 2.17 and 1.85, which were, therefore, assigned to H_2 -7. The latter resonance in turn showed cross peaks with H_2 -8 at δ 3.20 and 2.76. It should be noted that the signal at δ 2.76 integrates for two protons, and one of the C-8 methylene protons (δ 2.76) was isochronous to H-6. The assignment of the C-4 methylene protons at δ 1.75 and 1.98 was straightforward as they exhibited cross peaks with the signal at δ 3.53 for H-3.

The distinction between H_2 -10 and H_2 -11 was carried out through identification of corresponding carbon chemical

shift and then correlating with the proton resonances in the 2D $^{1}H^{-13}C$ COSY spectrum. These assignments were further confirmed by double resonance and nOe difference experiments. For example, irradiation of H-17 gave nOe's for H-16 and one of the H-11 protons.

The nOe difference studies (Table 1) gave a plethora of information regarding the stereostructure of 1 in solution. The most interesting result was obtained on

Atom	C[1]	C{2}	H{ 1 }	$J_{\mathrm{H,H}}(\mathrm{Hz})$	¹ H, ¹ H nOe's
1	128.7	127.6	6.03	$J_{1,2} = 10.6, J_{1,3} = 2.3, J_{1,6} = 4.1$	2,6
2	131.2	130.5	5.91	$J_{2,1} = 10.6, J_{2,3} = 1.8$	1,18-OMe
3	75.1	74.0	3.53	$J_{3,1} = 2.3, J_{3,2} = 1.8, J_{3,4a} = 11.7, J_{3,4a} = 5.3$	4e,14
4 a			1.75	$J_{gem} = 14.9, J_{4,3} = 11.7$	4e,18-OMe
	37.5	32.9			
4e			1.98	$J_{gem} = 14.9, J_{4,3} = 5.3$	3,4a,18-OMe
5	62.9	76.2	<u> </u>	—	
6	45.1	36.4	2.76	$J_{6,1} = 4.1, J_{6,7\alpha} = 1.8, J_{6,7\beta} = 9.4$	1,7 a ,14
7β			1.85	$J_{7,6} = 9.4, J_{7,8\beta} = 5.8, J_{7,8\alpha} = 10.0,$	7α,8β
	31.1	22.0		$J_{gem} = 12.0$	
7α			2.17	$J_{7,6} = 1.8, J_{7,8\beta} = 2.9, J_{7,8\alpha} = 4.1,$	7β,6
8α			2.79	$J_{gem} = 12.0$ $J_{8,7\alpha} = 4.1, J_{8,7\beta} = 10.0, J_{gem} = 12.0$	8β,7α
	52.9	59.0			
8β			3.20	$J_{8.7\alpha} = 2.9, J_{8.7\beta} = 5.8, J_{sem} = 12.0$	8α
10a			2.64	$J_{10,11e} = 3.0, J_{10,11e} = 5.8, J_{eem} = 12.3$	10e
	47.1	51.4			
10e			3.38	$J_{10,11e} = 5.8, J_{10,11a} = 7.0, J_{gem} = 12.3$	10a
11	27.5	27.0	2.87	m	
12	128.0	122.3	—	_	
13	144.0	134.6	—	—	
14	110.0	110.3	6.76	$J_{14,16} = 2.9$	3,6,19- OM e
15	157.8	157.2	—	_	
16	111.0	113.9	6.73	$J_{14,16} = 2.9, J_{16,17} = 9.0$	
17	128.8	128.5	7.09	$J_{17,16} = 9.0$	16
18-OMe	55.5	55.5	3.26	S	2
19-OMe	55.0	55.1	3.76	s	14,16
MeN	—	45.9	_		

TABLE 1. ¹H Chemical Shifts (δ H), Coupling Constants ($J_{H,H}$) and ¹H, ¹H nOe's for Isococculidine [1] and ¹³C Chemical Shifts (δ C) for 1 and 2.

irradiating the signal at δ 3.53 (H-3), which resulted in the enhancement of the signal at δ 6.76 (H-14) indicating that these protons are close in space. The 1.8 Hz coupling between H-2 and H-3 indicated a β -axial conformation for the latter (5). This was confirmed by the 11.7 Hz coupling between H-3 and H-4a. It was interesting that H-6 showed a strong nOe with H-14 and a 4.1-Hz coupling with H-1 indicating that ring D has a half-chair conformation.

The ¹³C chemical shift data for **1** listed in Table 1 were achieved on the basis of their multiplicities in the single frequency off-resonance decoupled spectra as well as using the DEPT pulse sequence that provided the number of attached protons to individual carbons. Wherever it was difficult, the assignments were accomplished by combined

application of 2D hetero COSY and specific proton decoupled ¹³C-nmr techniques.

The DEPT spectra of 1 indicated methylene carbons at δ 27.5, 31.1, 31.5, 47.1, and 52.9. The C-4, C-7, and C-8 methylenes were readily identified in the 2D ¹H-¹³C hetero COSY spectrum as their ¹H chemical shift has been established. Of the remaining signals at δ 27.5 and 47.1, the latter was assigned to C-10 because of the attached hetero atom. The ¹³C chemical shifts of quaternary carbons C-5, C-12, C-13, and C-15 were assigned by comparison with the spectra of related *Erythrina* alkaloids (6).²

²Om Prakash, Raja Roy, S. Jain, and D.S. Bhakuni (unpublished results).

Conversion of 1 into the corresponding methiodide 2 gave an upfield shift of carbons which are two bonds away (β) from the nitrogen and a downfield shift for α carbons. For example, the signal at 31.1 (C-7) in 1 appeared at δ 22.0 in 2. On the other hand, the signal at δ 47.1 (C-10) in 1 appeared at δ 51.4 in 2.

EXPERIMENTAL

All the spectra were recorded with a Bruker WM-400 multinuclear FT nmr spectrometer. Samples for ¹H measurements of **1** and **2** were carried out in a 5-mm ¹H/¹³C dual probe containing 4 mg of sample in 0.5 ml of CDCl₃. The ¹³Cnmr samples were prepared in 5-mm tubes by mixing 50 mg of sample with 0.5 ml of CDCl₃; TMS was used as an internal standard in both measurements. The 2D COSY spectrum was obtained using a pulse sequence 90°-t₁-90°-acq (7). Proton coupling constants in **1** were extracted from the spin decoupling difference spectroscopy (SDDS) technique and from a resolution-enhanced ¹H spectrum using the Gaussian multiplication technique (8).

Resonance multiplicities for 13 C were established via the acquisition of SFORD and DEPT spectra (9). The 2D 1 H- 13 C chemical shift correlation nmr spectrum was obtained using DEPT 2D pulse sequence (10).

ACKNOWLEDGMENTS

The use of the 400-MHz Fourier transform nmr facility at RSIC, Lucknow, is gratefully acknowledged. The authors are thankful to Mr. Edward Samson for technical assistance.

LITERATURE CITED

- D.S. Bhakuni, M.L. Dhar, M.M. Dhar, B.N. Dhawan, and B.N. Mehrotra, *Indian* J. Exp. Biol., 7, 250 (1969).
- D.S. Bhakuni and S. Jain, Tetrabedron, 36, 3107 (1980).
- R. Razakou, S.Y. Yunsou, S.M. Nasyrou, A.N. Chekhlov, V.G. Andrianov, and Y.T. Struchkou, J. Chem. Soc., Chem. Commun., 150 (1974).
- S.V. Bhat, H. Dornauer, and N.J. De-Souza, J. Nat. Prod., 43, 588 (1980).
- D.S. Bhakuni, H. Uprety, and D.A. Widdowson, *Phytochemistry*, **15**, 739 (1976).
- A.S. Chawla, S. Chunchatprasert, and A.H. Jackson, Org. Magn. Reson., 21, 39 (1983).
- W.P. Aue, E. Bartholdi, and R.R. Ernst, J. Chem. Phys., 64, 2229 (1976).
- A.J. Ferrige and J.C. Lindon, J. Magn. Reson., 31, 337 (1978).
- 9. D.M. Doddrell, D.T. Pegg, and M.R. Bendell, J. Magn. Reson., 48, 323 (1982).
- M.R. Bendall and D.T. Pegg, J. Magn. Reson., 53, 144 (1983).

Received 23 November 1987